Tailwind CSSTailwind CSS
Home
  • Tailwind CSS 书籍目录
  • Vue 3 开发实战指南
  • React 和 Next.js 学习
  • TypeScript
  • React开发框架书籍大纲
  • Shadcn学习大纲
  • Swift 编程语言:从入门到进阶
  • SwiftUI 学习指南
  • 函数式编程大纲
  • Swift 异步编程语言
  • Swift 协议化编程
  • SwiftUI MVVM 开发模式
  • SwiftUI 图表开发书籍
  • SwiftData
  • ArkTS编程语言:从入门到精通
  • 仓颉编程语言:从入门到精通
  • 鸿蒙手机客户端开发实战
  • WPF书籍
  • C#开发书籍
learn
  • Java编程语言
  • Kotlin 编程入门与实战
  • /python/outline.html
  • AI Agent
  • MCP (Model Context Protocol) 应用指南
  • 深度学习
  • 深度学习
  • 强化学习: 理论与实践
  • 扩散模型书籍
  • Agentic AI for Everyone
langchain
Home
  • Tailwind CSS 书籍目录
  • Vue 3 开发实战指南
  • React 和 Next.js 学习
  • TypeScript
  • React开发框架书籍大纲
  • Shadcn学习大纲
  • Swift 编程语言:从入门到进阶
  • SwiftUI 学习指南
  • 函数式编程大纲
  • Swift 异步编程语言
  • Swift 协议化编程
  • SwiftUI MVVM 开发模式
  • SwiftUI 图表开发书籍
  • SwiftData
  • ArkTS编程语言:从入门到精通
  • 仓颉编程语言:从入门到精通
  • 鸿蒙手机客户端开发实战
  • WPF书籍
  • C#开发书籍
learn
  • Java编程语言
  • Kotlin 编程入门与实战
  • /python/outline.html
  • AI Agent
  • MCP (Model Context Protocol) 应用指南
  • 深度学习
  • 深度学习
  • 强化学习: 理论与实践
  • 扩散模型书籍
  • Agentic AI for Everyone
langchain
  • 代码示例与实战指南(PyTorch/TensorFlow实现)

代码示例与实战指南(PyTorch/TensorFlow实现)

1. 基础扩散模型实现(PyTorch)

1.1 正向扩散过程

import torch
import torch.nn as nn
import numpy as np

def linear_beta_schedule(timesteps, beta_start=1e-4, beta_end=0.02):
    """线性噪声调度函数"""
    return torch.linspace(beta_start, beta_end, timesteps)

def forward_diffusion(x0, t, sqrt_alphas_cumprod, sqrt_one_minus_alphas_cumprod):
    """正向扩散过程"""
    noise = torch.randn_like(x0)
    sqrt_alpha = sqrt_alphas_cumprod[t].reshape(-1, 1, 1, 1)
    sqrt_one_minus_alpha = sqrt_one_minus_alphas_cumprod[t].reshape(-1, 1, 1, 1)
    return sqrt_alpha * x0 + sqrt_one_minus_alpha * noise, noise

1.2 U-Net噪声预测模型

class Block(nn.Module):
    def __init__(self, in_ch, out_ch, time_emb_dim):
        super().__init__()
        self.time_mlp = nn.Linear(time_emb_dim, out_ch)
        self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding=1)
        self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=1)
        
    def forward(self, x, t):
        h = self.conv1(x)
        time_emb = self.time_mlp(t)[:, :, None, None]
        h = h + time_emb
        return self.conv2(h)

class SimpleUnet(nn.Module):
    """简化的U-Net结构"""
    def __init__(self):
        super().__init__()
        # 实现下采样和上采样模块...
        
    def forward(self, x, timestep):
        # 实现U-Net前向传播...
        return predicted_noise

2. 训练循环实现

def train_diffusion(model, dataloader, optimizer, timesteps, device):
    # 初始化噪声调度参数
    betas = linear_beta_schedule(timesteps)
    alphas = 1. - betas
    alphas_cumprod = torch.cumprod(alphas, axis=0)
    
    model.train()
    for epoch in range(num_epochs):
        for batch in dataloader:
            optimizer.zero_grad()
            
            # 随机采样时间步
            t = torch.randint(0, timesteps, (batch.size(0),), device=device)
            
            # 正向扩散过程
            noisy_images, noise = forward_diffusion(
                batch, t, 
                torch.sqrt(alphas_cumprod),
                torch.sqrt(1. - alphas_cumprod)
            )
            
            # 预测噪声
            predicted_noise = model(noisy_images, t)
            
            # 计算损失
            loss = F.mse_loss(predicted_noise, noise)
            loss.backward()
            optimizer.step()

3. 采样过程实现

@torch.no_grad()
def sample(model, image_size, timesteps, device):
    # 初始化随机噪声
    img = torch.randn((1, 3, image_size, image_size), device=device)
    
    for i in reversed(range(timesteps)):
        t = torch.full((1,), i, device=device, dtype=torch.long)
        
        # 预测噪声
        predicted_noise = model(img, t)
        
        # 计算去噪后的图像
        alpha_t = alphas[t]
        alpha_t_cumprod = alphas_cumprod[t]
        beta_t = betas[t]
        
        if i > 0:
            noise = torch.randn_like(img)
        else:
            noise = torch.zeros_like(img)
            
        img = (img - beta_t * predicted_noise / torch.sqrt(1 - alpha_t_cumprod)) / torch.sqrt(alpha_t)
        img = img + torch.sqrt(beta_t) * noise
    
    return img

4. TensorFlow实现示例

import tensorflow as tf
from tensorflow.keras import layers

class DiffusionModel(tf.keras.Model):
    def __init__(self, image_size, widths, block_depth):
        super().__init__()
        # 定义噪声预测网络...
        
    def call(self, x, t):
        # 实现前向传播...
        return predicted_noise

def train_step(model, images, optimizer, timesteps):
    with tf.GradientTape() as tape:
        # 随机时间步
        t = tf.random.uniform([tf.shape(images)[0]], 0, timesteps, dtype=tf.int32)
        
        # 正向扩散
        noise = tf.random.normal(tf.shape(images))
        noisy_images = add_noise(images, noise, t)
        
        # 预测噪声
        predicted_noise = model(noisy_images, t, training=True)
        
        # 计算损失
        loss = tf.reduce_mean(tf.square(predicted_noise - noise))
    
    gradients = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(gradients, model.trainable_variables))
    return loss

5. 实战案例:图像生成

5.1 数据预处理

transform = transforms.Compose([
    transforms.Resize((64, 64)),
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5])
])

dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=128, shuffle=True)

5.2 训练与采样

# 初始化模型
model = SimpleUnet().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

# 训练
train_diffusion(model, dataloader, optimizer, timesteps=1000, device=device)

# 采样生成图像
generated_image = sample(model, image_size=64, timesteps=1000, device=device)

6. 进阶技巧

6.1 加速采样(DDIM)

@torch.no_grad()
def ddim_sample(model, image_size, timesteps, eta=0.0):
    # 实现DDIM采样算法...
    pass

6.2 分类器引导

def classifier_guided_sample(model, classifier, x, t, guidance_scale=2.0):
    # 实现分类器引导采样...
    pass

7. 可视化工具

import matplotlib.pyplot as plt

def plot_images(images, n_rows=1):
    """绘制生成图像"""
    plt.figure(figsize=(10, 10))
    for i in range(len(images)):
        plt.subplot(n_rows, len(images)//n_rows, i+1)
        plt.imshow(images[i].permute(1, 2, 0).cpu().numpy() * 0.5 + 0.5)
        plt.axis('off')
    plt.show()

8. 性能优化技巧

  1. 混合精度训练:
scaler = torch.cuda.amp.GradScaler()
with torch.cuda.amp.autocast():
    predicted_noise = model(noisy_images, t)
    loss = F.mse_loss(predicted_noise, noise)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
  1. 分布式训练:
model = nn.DataParallel(model)
  1. 梯度检查点:
from torch.utils.checkpoint import checkpoint

# 在U-Net的forward中使用
h = checkpoint(self.mid_block, h, t)

9. 扩展阅读与资源

  • 官方Diffusers库
  • Denoising Diffusion Pytorch实现
  • Stable Diffusion代码库

提示:实际应用中建议使用成熟的扩散模型库(如HuggingFace Diffusers)作为基础,再根据需求进行定制开发。

Last Updated:: 5/28/25, 11:37 PM