18.2 参考文献
核心学术文献
- Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
- 经典教材,涵盖智能体架构与基础理论
- Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT Press.
- 强化学习在智能体决策中的权威指南
- Goodfellow, I., et al. (2016). Deep Learning. MIT Press.
- 深度学习技术及其在智能体感知模块的应用
技术白皮书与行业报告
- Google Research (2023). "Pathways Language Model (PaLM): Scaling to 540B Parameters".
- 大语言模型在对话型智能体中的前沿进展
- McKinsey & Company (2022). The State of AI in 2022: Generative AI Breaks the Mold.
- 行业应用趋势与商业案例分析
伦理与政策研究
- Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford University Press.
- 探讨自主智能体的长期风险
- EU AI Act (2021). Proposal for a Regulation on Artificial Intelligence. European Commission.
- 现行AI治理框架的法规文本
开源项目文档
- TensorFlow Team (2023). Agents: A Library for Reinforcement Learning in TensorFlow. [GitHub]
- 智能体开发框架的官方实现指南
- OpenAI (2023). GPT-4 Technical Report.
- 生成式智能体的架构细节
补充阅读
- 期刊特辑: Nature Machine Intelligence (2023). "Multi-Agent Systems in Healthcare".
- 会议论文: NeurIPS 2022 Proceedings. "Emergent Cooperation in AI Agent Swarms".
提示:建议读者通过DOI或arXiv编号检索最新版本,部分资源可通过作者官网或学术平台(如Google Scholar)获取。
